Experience in Implementing a Parallel File System*

Rolf Riesenf Arthur B. Maccabe? Stephen R. Wheat?

March 1993

Abstract

With ever increasing processor and memory speeds, new methods to overcome the
“I/O bottleneck” need to be found. This is especially true for massively parallel com-
puters that need to store and retrieve large amounts of data fast and reliably, to fully
utilize the available processing power.

We have designed and implemented a parallel file system, that distributes the work of
transferring data to and from mass storage, across several 1/0 nodes and communication
channels.

The prototype parallel file system makes use of the existing single threaded file sys-
tem of the Sandia/University of New Mexico Operating System (SUNMOS). SUNMOS
is a joint project between Sandia National Laboratory and the University of New Mex-
ico to create a small and efficient OS for Massively Parallel (MP) Multiple Instruction,
Multiple Data (MIMD) machines.

We chose file striping to interleave files across sixteen disks. By using source-routing
of messages we were able to increase throughput beyond the maximum single channel
bandwidth the default routing algorithm of the nCUBE 2 hypercube allows. We describe
our implementation, the results of our experiments, and the influence this work has
had on the design of the Performance-oriented, User-managed, Messaging Architecture
(PUMA) operating system, the successor to SUNMOS.

*This research was supported in part by Sandia National Laboratories under contract ??.777.777

"Department of Computer Science; The University of New Mexico; Albuquerque, NM 87131; email:
riesen@cs.unm.edu

{Department of Computer Science; The University of New Mexico; Albuquerque, NM 87131 email:
maccabe@cs.unm.edu. Currently on sabbatical at Sandia National Laboratories.

$Organization 1424; Sandia National Laboratories; Albuquerque, NM 87185-7761; email:
srwheat@cs.sandia.gov

1 Introduction

Massively Parallel (MP) distributed memory systems are used to run large-scale scientific
applications. While the number of processing elements easily scales for ever larger problem
sizes, this is not generally true for secondary storage. If an application is given more
processing power to solve a larger problem size, its 1/O requirements may increase, using
the same number of 1/O devices. Vendors of Multiple Instruction, Multiple Data (MIMD)
machines usually allow the connection of multiple disk subsystems to various parts of the
machine. However, with a traditional file system, applications have to be modified to
take advantage of the added capacity. An application tuned to a particular topology and
configuration will be hard to port to another architecture. The goal of this project was to
increase throughput to secondary storage transparently to the application.

The need to access mass-storage quickly stems from the fact that typical scientific applica-
tions produce large amounts of data. For example, a program running on 1024 processors
for 60 minutes, could easily produce IMB (mega byte) of data on each node. This program
would need 1GB (giga byte) of disk space to store the final result. At the beginning of this
project it took more than 43 minutes to transfer that much data to a file using the fwrite
function. Applications that need to store intermediate results on secondary storage because
there is insufficient memory available on each node, may experience additional performance
decreases. For these applications the ratio of computation to I/O time can easily drop below
one.

The goal of this project was to increase throughput when accessing data on secondary
storage. We wanted to use multiple disks simultaneously to increase throughput beyond
the data transfer rate of a single disk. Furthermore, we wanted to exploit the capability
of the nCUBE 2 hardware to simultaneously send and receive data through more than
one DMA channel. In Section 2 we show the hardware and software environment we had
available to develop and test our system. Section 3 describes the communication primitives
used to implement the file system. Section 4 discusses the basic, sequential file system upon
which the parallel file system was built. In Section 5 we show the performance improvements
attained by tuning parameters in the file system and the device driver. Then, in Section 6,
we explain how we implemented the parallel file system. Section 7 discusses the experience
with a first implementation that used a single channel to the disks. Section 8 shows the
measurements of a second implementation that uses multiple channels. Section 9 explores
the tunable parameters in our parallel file system. Section 10 finally draws some conclusions
and explains the impact of this research on the design of our next operating system.

2 Development and Test Environment

2.1 Hardware

Figure 1 shows the system configuration used to develop and study the parallel file system.
An nCUBE 2 hypercube with 1024 array (or compute) nodes provided the foundation for
this research. Attached to the 1024 array nodes are sixteen I/O nodes. Fach 1/0 node is
connected to a SCSI-2 disk controller that can handle up to seven disks. In our configuration,

each controller had access to a single 1GB disk. The 1/O nodes have the same physical
characteristics as the array nodes. All nodes have 4MB of memory, a Complex Instruction
Set Computer (CISC) microprocessor, and 13 bidirectional Direct Memory Access (DMA)
channels. Each I/0 node is connected to eight array nodes in the hypercube.

1/0 Nodes
Disks
1024 Array 15
Nodes - -
Host Array Node I/0 Node
——— Host
— \ File System
/ yod Application fsmsghandler

usmsghandler C library C library
SUN OS SUNMOS SUNMOS

Figure 1: System Configuration

All connections within the cube, as well as the channels to the disks, have a bandwidth of
2.2MB/s. The DMA controllers are capable of driving all channels simultaneously. Fur-
thermore, each connection is full duplex; that is, data can leave a node at 2.2MB/s while
data is arriving from the same destination at the same rate [3].

If data must pass through intermediate nodes to reach its destination, the hardware uses
wormhole routing. No software intervention or intermediate storage is needed. This greatly
improves communication performance [1] [4].

A Sun workstation serves as host computer. It controls the operation of the cube; for
example booting the operating system, and loading application and server programs.

2.2 Software

Tests and development were done under the Sandia/University of New Mexico Operating
System (SUNMOS). SUNMOS is a small, efficient operating system for distributed MIMD
architectures. In addition to other facilities, SUNMOS provides an emulation of Vertex, the
vendor supplied operating system for the nCUBE 2. SUNMOS and the research described
in this paper have greatly influenced the design of the Performance-oriented User-managed
Messaging Architecture (PUMA) operating system, the successor to SUNMOS.

All array and I/O nodes run a separate instance of the SUNMOS kernel. Application
programs running on the nodes are linked with the C language library that interfaces them

to the kernel. In addition to the standard C functions, the library provides routines that
provide access to the inter-processor network. Two important functions are the nuwrite
and nuread pair (see Section 3). These functions allow message passing between nodes and
provide the foundation of all I/O operation.

The application program running on the 1/O nodes is fs, the file system. The SUNMOS
file system is a modified version of the MINIX file system [6] [7]. The file system accepts
messages from array nodes to initiate I/O operations to the disk controllers. The SUNMOS
file system offers services that look to the programmer (through the C library) like the
standard Unix file I/O system. Specifically furite and fread allow I/O from array nodes
to any disk attached to the cube.

The application loader program, yod, running on the host, facilitates stdio operations for
applications running on the cube, as well as access to disk volumes available to the host.

The parallel file system described in this report is built on top of the SUNMOS file system.
This facilitated the rapid prototyping of new ideas for experimentation. For PUMA we will
rewrite the SUNMOS file system and make parallel access the default.

3 Communication Primitives

The lowest level functions to transfer data between nodes are nwrite and nread. These are
Vertex compatible, blocking message passing functions. By blocking we mean that these
functions do not return until the data has been transferred from or to the user provided
buffer space.

SUNMOS maintains a buffer, called the comm space, to store incoming and outgoing mes-
sages. The size of the comm space can be set for each application but remains fixed during
application execution. Comm space flooding can occur when more messages arrive than
the comm space can hold. If flooding occurs, messages may be discarded. This is especially
troublesome for servers that cannot anticipate the number or size of requests that will arrive
in a given time frame.

In SUNMOS, the functions nuwrite and nuread behave similarly, but return immediately
to the user. It is the user’s responsibility to check a flag to determine when the transfer
has been completed. Until that time, the buffer space should not be disturbed; otherwise,
the data content might become corrupted. These non-blocking calls make it possible to
continue processing while the DMA hardware performs the data transfer. Our parallel file
system makes extensive use of this capability in order to parallelize transfers and manage
the data stripes on the individual disks.

Two other important functions in SUNMOS are readmem and writemem. In the next section
we will see that these functions allow us to build an efficient and reliable server protocol
that is not subject to comm space flooding. Using readmem, a server can read data directly
from the application’s memory on another node. The writemem function allows a server to
write data directly into an application’s buffer, thereby circumventing comm space.

4 File System

The SUNMOS file system uses a message handler on each I/O node. The C library functions
used by applications running on the array nodes are based on a simple Remote Procedure
Call (RPC) protocol. These functions translate application requests (e.g., fopen, fread,
and fwrite) into messages that are sent to the message handler on the appropriate 1/0
node. Depending on the message type, the message handler calls the corresponding function
in the file system which then honors the request.

Earlier we mentioned that too many messages could flood the comm space of an I/0O node.
This is especially true for large file transfer requests that can easily exceed the size of the
available comm space. Figure 2 shows the data flow for the original fwrite function.

Array Node I/O Node

Data

E oo Q/

£ Data

App. Memory

Figure 2: Data flow in the old fwrite

Besides the unreliability, this transfer method unnecessarily duplicates space on each node
and hampers performance because of the required memory-to-memory copies. Before we
could embark on building a parallel file system, we had to improve this protocol to ensure
that data sent, arrived at its destination reliably and efficiently. Figure 3 illustrates the
new protocol.

The C library, activated by a call to fwrite, sends a short request message to the I/O node
using nwrite. This request contains the location of the data in user space, the amount of
data to be transferred, and the file descriptor. The message handler uses this information
to initiate a readmem request for a portion of the user data. This approach enables the
message handler to use double buffering. While one packet is being sent to the disk, the
file system can request another portion of the user data. Since the file system controls the
data transfer, it can always make sure that there is space allocated for the requested data.

When the data has been read from the user space and sent to the disk, an acknowledgment
message is sent to the library of the initiating application. Control is then returned to the
application program.

Array Node I/O Node

C Fwrite Request
omm - Comm
Space Space
ACK
User - ReadMem File Sys
Data
4

Figure 3: Data flow in the new fwrite

Note that only requests and acknowledgments are passed through the comm space. The
data is transferred directly from user space into a file system buffer. Because the basic 1/0
operations (fread and fwrite) block the execution of the application program, each array
node can have at most one outstanding data transfer request (SUNMOS is single tasking).
This guarantees that the file system will never have more requests than the total number
of nodes in the system. Since these requests have a fixed and small size, the file system can
reserve enough comm space at startup.

A second advantage of the new protocol is scalability. On a larger machine there will be
more nodes with, possibly, larger memories. Therefore, more requests for larger data sizes
might arrive in the comm space of an I/O node. Since the maximum number of requests
can be determined beforehand and is independent of the amount of data to be transferred,
the new protocol scales easily. While the size of the comm space increases linearly with the
number of nodes, the constant factor is very small.

The protocol for our fread is the mirror image of the fwrite protocol. Instead of the
readmem function, the file system uses the writemem function to deposit the data directly
into the application’s memory.

5 Low-Level Tune-Up

Figure 4 diagrams the performance (throughput) of the fwrite function using the new
protocol. For our tests we wrote files of increasing size to the disk. In particular, we wrote
files, whose sizes were multiples of 8kB, from 8kB to 256kB. Additionally, we wrote files
whose sizes were multiples of 128kB.

For one test, we transferred data into the cache on the I/O node and returned as soon as

the data was stored. For each file we cleared the cache. If a file fit completely into the
disk cache, only a minimum number of disk accesses were necessary to read and update
directory information.

The second test wrote the same files again (after they had been deleted), but this time the
disk cache operated in write-through mode. Thus, the whole file was written to the disk
before the operation completed. A third test measured the speed of fwrite under Vertex.

Using cache, the transfer rate approaches the hardware bandwidth of the node connections
(2.2MB/s). When the cache becomes full, and data must be transferred to disk, through-
put drops dramatically. The final throughput asymptotically approaches the 400kB/s we
achieved when using the write-through option.

Fwrite(), 8Kb blocks, before SCSI tune-up

2200 ™ L

2000 |

1800 |

_cache size ———

1400 |7

1200 -+ 'SUNMOS cache
P {SUNMOS: fwritie

kB/ s

1000
800

600 [

200

File size in kB

Figure 4: Before tune-up

Since we were going to build the parallel file system on top of the existing file system, we
wanted it to perform as fast as possible. We identified the following parameters to tune
performance:

Cache size. The unused portion of the memory on the I/O nodes is used for caching.
With a block size of 8kB and 16kB we had 100 cache blocks for a cache size of 800kB
and 1600kB respectively. When the block size was 32kB we had room for 80 blocks
corresponding to a cache size of 2560kB.

SCSI transfer size. SCSI transfers data in disk-sector-size chunks. Our disks have a sec-
tor size of 512 bytes. The maximum number of sectors transferred with one command
can be set between 1 and 127 sectors. Requests for larger transfers than the maximum
setting are split into multiple transfers. Smaller transfer requests are performed in a
single burst.

Block size. MINIX, like other UNIX file systems, uses blocks as the unit of disk transfer.
Block sizes are typically between 512B and 32kB. Larger block sizes improve the
transfer rate but waste disk space due to fragmentation. Disk fragmentation is a
significant problem when many small files are stored on the disk. Smaller block sizes
improve disk space utilization, but increase transfer time due to the repeated overhead

[2].

Originally, the SCSI transfer size was set to 8 sectors (4kB) in our SCSI driver. As Figure 5
indicates, this resulted in a maximum transfer rate of about 400kB/s. After increasing the
size to the maximum of 127, we were able to attain more than 1400kB/s for sufficiently
large data transfers.

Di sk Wite Speed

1800

1600

1400

1200

1000

kB/ s

800

600

400

200

1 10 100 1000
Nunber of sectors

Figure 5: SCSI write throughput

Even after this improvement, the file system transfer rate remained the same. The reason
for this is that the file system used a block size of 8kB (16 sectors) that was not large enough
to exploit the improved transfer rate of the SCSI driver. Therefore, we increased the block
size to 16kB and finally to 32kB. Figure 6 shows the result of these changes.

While the transfer rate into cache remained the same, the time it took to write a file to
disk was significantly lowered by using 16kB blocks and even more so by using 32kB blocks.
In a production environment, the cache will quickly become full. Modified data blocks will
have to be written to the disk in order to make room for new blocks. Read requests might
benefit from the availability of data in the cache; however, most writes will cause blocks to
be written to disk. Therefore, the most interesting curve in Figure 6 is the middle one that
shows throughput using the write-through method.

We chose a block size of 32kB because we wanted to tune our file system for large files.

Fwrite() Speed, 32kB bl ocks, after SCSI tune-up

2200 —

1800

1600

1400 .cache size—=>

1200 [SUNMDS cache
. {SUNMOS: fwwrite
1000 fVertex furite

kB/ s

600 [

400 Li

200 i HE S S S U
10 100
File size in kB

Figure 6: After SCSI tune-up with 32kB blocks

Selecting an even larger block size did not result in much higher throughput at the cost of
significantly increased disk fragmentation.

6 Parallel Striping

Several methods have been proposed to increase disk throughput. Interleaving data across
several disks sends the contents of a single file to multiple controllers and disks. The goal
is to reduce data transfer time by a factor of 1/n, where n is the number of disks. This
assumes that there are n independent channels available, or the capacity of the channels is
not a limiting factor [5].

Interleaving can be done at the bit, byte, sector, block, or record level. When interleaving
is performed at the block level, it is often called striping. One stripe of data with a length
corresponding to the block size is placed on the first disk. The second stripe goes to the
second disk and so on until all disks have been used. If there are more stripes to store, the
first disk is reused.

We chose striping at the block level for several reasons:

o [t can be easily implemented on top of the existing file system as an additional library
layer.

e As a prototype, the system should be easy to modify, so that new algorithms and
parameters can be tested quickly without rebuilding the file system.

e If the chunks sent to individual I/O nodes are contiguous data regions of the original
file, bookkeeping and management of individual stripes can be done with less overhead.

For this experimental version of our parallel file system, we collect all the stripes for one
file on a given disk into a single file. An additional file is used to store information about
the structure of the parallel file; e.g. stripe size, disks used, total size, size of each disk, etc.
This strategy allows for consistency checks and increases the speed of opening a parallel
file. Therefore, each parallel file is represented by n + 1 regular files, where n is the number
of disks spanned by the parallel file.

6.1 Example of a Parallel Write

In this section, we discuss a write operation to a parallel file. This example illustrates how
the data is distributed among the disks. In this example, we assume the user has just
issued a request to write a 64kB data block to a parallel file. We further assume that the
file already exists and is distributed over three disks.

Our example uses a stripe size of 8kB. In Figure 7, we see that the file already contains
34kB of data—two full stripes on Disk 0, one complete stripe on Disks 1 and 2, and an
incomplete stripe on Disk 1.

b
-_—

P
56kB__ h .
48kB_ | 9
40kB__ | f
32kB
—> © Disk 0 Disk 1 Disk 2
24kB_ | d
¢ Existing data on disk
b Fill-up last used stripe
a

User Buffer

Data sent upun ACK

L1

.

[Get al controllers busy
1

B Stat last stripe

Figure 7: Add User Buffer to Existing Parallel File

We cannot simply divide the user buffer into 8kB blocks and send them to the disks. After
a series of writes, it would be impossible to reassemble the original file. Instead, we have to
proceed in the following manner:

¢ Find out how much more data fits into the last used stripe. Send that amount of data
to the appropriate disk. In our example we send 6kB (block @) to Disk 1.

Nel

e To keep as many channels and disks busy as possible, we carve the remaining buffer
into 8kB blocks and send one block to each disk that is not already receiving data.
Disk 0 and Disk 2 in our example are still idle. So, we send them each an 8kB block
(blocks b and c¢).

e We now wait for an acknowledgment signal from one of the I/O nodes. Whenever we
receive one, and there is data left for that particular disk, we send another 8kB block.
In our example we fill blocks d, e, f, ¢, and h.

¢ When blocks ¢ and f have been written and we receive another acknowledgment signal
from Disk 0, we send the partial block :.

After the first three blocks (a, b, and ¢) have been sent, operation proceeds asynchronously.
Whenever an I/0 node completes its task, we send it the next block of data. Thus, blocks
d, e, f,qg,and h are written in no particular order, with the exception, of course, that block
d precedes block ¢, and block e precedes block h. This scheme keeps all 1/O nodes and
disks busy at the same time.

7 First Implementation

Figure 8 shows throughput measurements for the first implementation of the new parallel
fwrite. Compared to the underlying sequential fwrite, there is practically no improve-
ment. While this is not what we had expected, it does indicate that the overhead of
managing the individual stripes is not significant.

The reason for the poor performance is the default routing algorithm that determines the
path taken by messages sent from an array node to an I/O node. The default algorithm
used in the nCUBE 2 computer is the E-cube routing algorithm. It is a dimension-ordered
routing method that uses minimal path length and is guaranteed to be deadlock free [4].
If messages are sent to different locations, they might share a common channel, depending
on the position of the originating node relative to the destination. Figure 9 illustrates the
use of a common channel. In this case, the fanout (use of multiple channels) does not occur
until the first hop has been completed through a common channel.

8 Second Implementation

The nCUBE 2 hardware supports source routing where the originating node places infor-
mation about the entire path into the header of the message. This allows us to force packets
out more than one channel and reduce channel contention. We do this in a round-robin
fashion using the four upper channels on the array nodes. We specify a direct neighbor
as the first destination for each packet. From that neighboring node, we let the packet
travel along the default path. This guarantees that our new scheme is deadlock free, while
reducing contention for common channels.

Note that our strategy may result in packets using longer routes than in the default routing
algorithm. The default routing algorithm brings a packet closer to its destination after

10

kB/ s

Parallel fwite to 16 Di sks

7000 T T T T

o0 f

fwite with cache —

. patallel fwrite, no cache ——i | | i @@}
5000 ittt
4000
3000
2000
1000
O" i i A T S R R A |
10 100

File size in kB

Figure 8: Throughput vs. File Size

1.1IMB/s

2.2MB/s 1.1MB/s
P

1.1MB/s

Figure 9: Single channel due to late fanout

11

P

each channel it traverses. Our strategy introduces at most two extra hops into the path
of a packet, but we gain a fourfold increase in the throughput of data leaving a node
(see Figure 10). These additional hops increase latency, but this increase is more than
compensated for by the higher throughput.

1.1MB/s
_>

1.1IMB/s

1.1IMB/s

Figure 10: Multiple channel due to early fanout

Our experience indicates that it does not pay to use more than four channels simultaneously.
Mainly because the DMA /memory hardware is limited to 10-12MB/s. In addition, channel
contention increases when more channels are used. Using one to four channels we observed
a steep increase in throughput. While the throughput continued to increase when using
more channels, it began to level off after four channels.

Figure 11 shows the performance of the new parallel fwrite using multiple channels and
compares it to the single channel performance. It is interesting to note the irregularity of
the curve when multiple channels are used. Let us consider the valley at the 80kB mark to
show what circumstances led to this particular drop in performance.

To send 80kB of data, the first stripe (16kB) is sent out the first channel to the appropriate
disk. Then the second stripe is sent out the second channel and so on. After the transfer
of four stripes (64kB) has been initiated, all four channels are busy. However, the parallel
file system continues to generate requests. It tries to send out the last stripe and has to
reuse the first channel to do so. Since the transfer of the very first stripe is still in progress,
transmission of the last stripe is delayed.

Figure 12 illustrates that sending five stripes takes twice as much time as sending four
stripes, due to channel contention. In other words, we could have sent eight stripes in the
same time it took to send five stripes. The irregularities in Figure 11 are due to varying
utilization of the available channels.

9 Parallel File System Parameters

Using our parallel file system we were able to identify three tunable system parameters.

12

kB/ s

Parallel fwite to 16 Di sks

7000 T T T T

5 fwite with cache —
:single channel no cache --— i b
5000 i four channel's, | no cache ===

4000

3000

2000

1000

o L N N R A I B I

10 100 1000
File size in kB

Figure 11: Throughput of parallel fwrite

16kB 16kB First Channel -

16kB 16kB Second Channel .

16kB 16kB Third Channel .

16kB 16kB Fourth Channel .
ty ty

- -

Figure 12: Cause of channel contention

13

Number of paths. By using more and more paths we are able to linearly increase through-

put with every additional path used, up to four paths. Using more than four paths
further increases throughput, but the increase is no longer linear. The DMA mem-
ory bandwidth of the processing elements limits the total maximum throughput to
between 10MB/s and 12MB/s.

Using more than four channels has the disadvantage that we interfere with message
transmissions of neighboring nodes without a significant gain. Also, by “reserving”
the full memory bandwidth for 1/0, processing on that node is impeded.

Number of disks. Since we are using only four channels, striping a file across more than

four disks does not pay off. An application can partition the sixteen available disks
into groups of four. It regards each group as a single device by using our parallel
file system. If the application uses 64 nodes or more, it is possible to keep the data
streams to each group completely separated.

Stripe size. If the size of each data transfer to a file for an application could be pre-

10

determined, then the optimal stripe size would be the size of the most frequently
transmitted size divided by the number of available channels. If ¢ is the number of
channels that can be used, then a transfer request of size s would be split into ¢ stripes
of size s/c. The overhead to schedule and transfer the stripes would be at a minimum,
while the throughput would be maximized.

The stripe size should not be too big, since that reduces channel utilization. If a small
stripe size is chosen, the overhead of processing might interfere with throughput. We
have observed that a stripe size between 8kB and 24kB is best when four channels are
used.

Conclusions and Further Work

We have implemented our strategies as a set of C library function calls that closely mimic the
standard UNIX file 1/O interface. The management of channels, disks, and the individual
stripes are transparent to the user. A parallel file in our system looks like a sequential file
to a user.

From the start of this project to the current state, we have been able to increase throughput
twenty-fold using a variety of techniques:

1.
2.

3.
4.

Tuning the parameters of our device driver to take advantage of the SCSI-2 interface.

Tuning the block size of our file system to match the optimal transfer size of the
SCSI-2 interface.

Striping files across multiple disks to increase throughput.

Using the multiple channels available on the hypercube to further increase throughput.

Item 1 is a simple matter of analyzing performance and tuning the parameters to the given
hardware configuration. Increasing the file system block size is a compromise. It benefits

14

the transfer of larger files, while wasting disk space due to fragmentation for smaller files.
The applications run on these types of computers warrant, in our opinion, the fine-tuning
of system parameters to benefit large file transfers.

File striping is a method that finds more and more acceptance in high performance comput-
ing. Not all applications will benefit form file striping. Some scientific codes do calculations
and disk transfers in a lock-step fashion; either all nodes compute or do transfers. In that
case the advantage of using multiple channels will be nullified since the node to disk trans-
fers are interfering with each other. However, these type of applications will not see a
performance degradation since the administrative overhead in our system is minimal. Some
of these applications might even benefit since our striping approach packetizes the data and
can help to better utilize the available channels. More research is required in this area.

The basic protocol underlying all our disk transfers is reliable and efficient. The use of
the readmem and writemem functions poses a security risk, since any process on any node
can read and modify any other application’s memory. We are addressing this issue while
implementing our system under PUMA.

When porting PUMA to a mesh architecture, the issue of using multiple channels will also
have to be addressed. Performance measurements will tell us if it is worthwhile to consider
multiple routes in such an environment.

11 Acknowledgments

We wish to thank Lisa Kennicott who helped us design the basic data transfer protocol un-
derlying our fwrite and fread functions. The SUNMOS team was helpful with comments
and ideas during the design phase and the preparation of this paper. We also wish to thank
Sandia National Laboratories for the use of their equipment.

References

[1] Sergio Felperin, Prabhakar Raghavan, and Eli Upfal. A theory of wormhole routing in
parallel computers. In 33rd Annual Symposium on Foundations of Computer Science,
pages 563-572, New York, N.Y., 1992. IEEE.

[2] Marshall Kirk McKusick, William N. Joy, Samuel J. Leffler, and Robert S. Fabry. A fast
file system for UNIX. ACM Transactions on Computer Systems, 2(3):181-197, August
1984.

[3] nCUBE, 1825 NW 167th Place, Beaverton, OR 97006. nCUBFE 2 Processor Manual,
December 1990. PN 101636.

[4] Lionel M. Ni and Philip K. McKinley. A survey of wormhole routing techniques in direct
networks. Computer, 26(2), Feb 1993.

[5] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for redundant arrays of
inexpensive disks (RAID). In ACM SIGMOD Conference, pages 109-116, June 1988.

15

[6] Andrew S. Tanenbaum. Operating systems : design and implementation. Prentice-Hall
software series. Prentice-Hall, Englewood Cliffs, N.J., 1987.

[7] Andrew S. Tanenbaum. MINIX for the IBM PC, XT, and AT. Prentice-Hall software
series. Prentice-Hall, Englewood Cliffs, N.J., 1988.

16

A Manual Pages

17

Sunmos Parallel File Library PFOPEN(3)

NAME

pfopen — open a parallel file

SYNTAX

#include ”clparfs.h”

PFILE *pfopen(char *filename, char *mode, int last, int *blk_size);

DESCRIPTION

pfopen opens the parallel file filename and returns a pointer to a PFILFE structure.
This pointer is used to read, write, and close a parallel file. The method used to
implement parallel files under Sunmos is file striping. A parallel file consists of a
descriptor file and one to MAX_STRIPES stripe files. Each stripe file is located on
a separate disk.

filename must be of the form:

//fdxy/pfname

x specifies the first controller to be used for the file, and y determines the disk on
each controller. The descriptor file will be located on the disk attached to the first
controller.

mode is one of the following:

r open parallel file for reading (file must exist).

w truncate or create a parallel file for writing.

a open parallel file for writing at end of file, or create for writing.
r+ open for reading and writing,.

w4 truncate or create for reading and writing.

a+ open or create for reading and writing at end of file (append).

last specifies the last controller to be used for this file. Note, that this parameter
together with z in the filename, determines how many disks the parallel file will
spawn. The value for last must be between x and MAX_STRIPES:

0 <=2 <= last < MAX_STRIPES

Sunmos July 1992 18

Sunmos Parallel File Library PFOPEN(3)

If the file already exists, the value of last is ignored. If a new file is created and the
value of last is outside of the allowed range, then the default of MAX_STRIPES -
1, is used.

The parameter blk_size specifies the block size (thickness of each stripe) in bytes.
The default BLOCK_SIZE (defined in fsconst.h) is used, if blk_size is less than
one. This value is ignored, if the file already exists. The value chosen for blk_size
should be the size of an average pfread or pfwrite divided by the number of disks
the parallel file spawns.

RETURN VALUE

pfopen returns NULL if the operation fails. pfs_error contains the appropriate
error number.

EXAMPLES

PFILE *pfp;
pfp= pfopen('"//£fd80/parfile", "w", 15, 0);

opens or creates the parallel file parfile. The file will be located on disk 0 of
controllers 8 to 15; i.e. it will spawn eight disks.

PFILE *pfp;
pfp= pfopen('"//£fd02/parfile", "r", -1, 0);

opens the file parfile for reading. All parts of this file will be on disk 2 of each
controller. The file must already exist. Therefore, the block size and the last
controller in use are predetermined.

PFILE *pfpl, *xpfp2;
pfpl= pfopen("//£d00/parfile", "w", 7, 0);
pfp2= pfopen("//£fd80/parfile", "w'", 15, 0);

These two files can coexist, while

PFILE *pfpl, *xpfp2;
pfpl= pfopen("//£fd00/parfile", "w'", 11, 0);
pfp2= pfopen("//£fd80/parfile", "w'", 15, 0);

is an illegal combination, because the stripe files on controllers 8 to 11 are overlap-

Sunmos July 1992 19

Sunmos Parallel File Library PFOPEN(3)
ping.
SEE ALSO

pfclose(3), pfflush(3), pfwrite(3), pfread(3), pfremove(3), pfrename(3), pfeof(3),
pferror(3), pfelrerr(3), pfperror(3), pfstrerror(3)

CAVEATS
It is very important to call pfclose before the program ends. If this is not done,
the descriptor file will not be updated. Without the correct information in the

descriptor file, the parallel file cannot be opened again, because the file positioning
information has been lost.

AUTHOR

Rolf Riesen

Sunmos July 1992 20

Sunmos Parallel File Library PFCLOSE(3)

NAME

pfclose, pfllush — close or flush a parallel file

SYNTAX

#include ”clparfs.h”

int pfclose(PFILE *pfile);
int pflush(PFILE *pfile);

DESCRIPTION

pfclose flushes any unwritten data to the parallel file pfile; i.e. the stripe files and
the descriptor file. All automatically allocated buffers are freed and all open files
are closed

pfflush flushes any unwritten data to the parallel file pfile; i.e. the stripe files and
the descriptor file.

RETURN VALUE

pfclose and pfflush return zero on success and EOF on error.

CAVEATS

Unlike an ordinary file, a parallel file needs to be closed, or at least flushed, before
the program terminates. Since this library is implemented on top of the existing
Sunmos file system, a program terminating without a pfclose or pfflush , will
leave the descriptor file un-updated.

When the parallel file is opened again, internal checks will detect a discrepancy
between the actual file sizes of the stripe files and the numbers recorded in the
descriptor file.

SEE ALSO

pfopen(3), pfwrite(3), pfread(3), pfremove(3), pfrename(3), pfeof(3), pferror(3),
pfclrerr(3), pfperror(3), pfstrerror(3)

AUTHOR

Rolf Riesen

Sunmos July 1992 21

Sunmos Parallel File Library PFWRITE(3)

NAME

pfread, pfwrite — parallel file input/output

SYNTAX

#include ”clparfs.h”

int pfwrite(void *pir, int size, int nobj, PFILE *pfile);
int pfread(void *ptr, int size, int nobj, PFILE *pfile);

DESCRIPTION

pfwrite writes nobj objects of size size to the parallel file pfile. The data is taken
from memory location ptr. pfwrite returns the number of objects actually written.

pfread reads at most nobj objects of size size from the parallel file pfile. The data
is placed at ptr. pfread returns the number of objects actually read.

RETURN VALUE

pfwrite and pfread return the number of objects actually written or read. The
return value might be different from nobj, if an error occurs; e.g. disk full. For
some type of errors, the return value is 0; e.g. attempt to write to a write protected

file.

The return value should always be compared to nobj. In case it is 0, the external
variable pfs_error contains an appropriate error number. pfperror can be used to
display the corresponding error text.

CAVEATS

While ptr is not required to point to any particular address, performance suffers, if
ptr does not point to a word aligned object.

SEE ALSO

pfopen(3), pfclose(3), pfilush(3), pfremove(3), pfrename(3), pfeof(3), pferror(3), pf-
clrerr(3), pfperror(3), pfstrerror(3)

AUTHOR

Rolf Riesen

Sunmos July 1992 22

Sunmos Parallel File Library PFREMOVE(3)

NAME

pfremove — remove (unlink) a parallel file

SYNTAX

#include ”clparfs.h”

int pfremove(char *filename, int last);

DESCRIPTION

pfremove removes all the stripe files and the descriptor file associated with the
parallel file filename. If the descriptor file is readable, and appears uncorrupted,
the parameter last is ignored. The information in the descriptor file is used to locate
all stripe files and delete them.

However, if the descriptor file is corrupted, or does not exist, last is used to find the
last stripe file. In this case, last should be set to the same value as the corresponding
parameter in the pfopen command, when the file was created.

This feature allows the removal of partially corrupted parallel files; e.g. a parallel
file with a missing descriptor file.

RETURN VALUE

pfremove returns zero on success and non-zero on error.

SEE ALSO

pfopen(3), pfclose(3), pfflush(3), pfwrite(3), pfread(3), pfrename(3), pfeof(3), pfer-
ror(3), pfclrerr(3), pfperror(3), pfstrerror(3)

AUTHOR

Rolf Riesen

Sunmos July 1992 23

Sunmos Parallel File Library PFRENAME(3)

NAME

pfrename — renames a parallel file

SYNTAX

#include ”clparfs.h”

int pfrename(char *oldname, char *newname);

DESCRIPTION

pfrename renames or moves oldname to newname. The path of newname must
already exist on all disks the parallel file spawns (see examples).

RETURN VALUE

pfrename returns zero on success and non-zero on error.

EXAMPLES

The following command renames the parallel file //fd00/example to //fd00/new:

pfrename("//£d00/example", "//£d00/new");

Let us assume for the moment, that //fd00/example had been created spawning
controllers 0 and 1. The parallel file would then consist of the two stripe files
//fd00/.pfs.example on disk 0 of controller 0 and //fd10/.pfs.example on disk 0 of
controller 1. There would also be the descriptor file //fd00/example on disk 0 of
controller 0.

The above pfrename command renames the two stripe files as well as the descriptor
file. If renaming of any of these three files fails, pfrename will fail and return a
non-zero value.

For the command

pfrename("//£d00/example", "//£d00/my dir/new");

to work, the directory my_dir must exist on all disks which contain one of the stripe

files.

Sunmos July 1992 24

Sunmos Parallel File Library PFRENAME(3)

SEE ALSO

pfopen(3), pfclose(3), pfilush(3), pfwrite(3), pfread(3), pfremove(3), pfeof(3), pfer-
ror(3), pfclrerr(3), pfperror(3), pfstrerror(3)

CAVEATS
pfrename is not atomic. If some of the stripe files, or the descriptor file, have been
renamed, and the operation fails, pfrename tries to undo the changes. However,

if another process has created a file that conflicts with oldname in the meantime,
then the undo operation will fail.

RESTRICTIONS

oldname and newname must have the same controller and disk number; i.e. moving
a parallel file from one disk to another is not allowed.

AUTHOR

Rolf Riesen

Sunmos July 1992 25

Sunmos Parallel File Library PFERROR(3)

NAME

pferror, pfclrerr, pfeof — parallel file status inquiries

SYNTAX

#include ”clparfs.h”

int pferror(PFILE *pfile);
void pfelrerr(PFILE *pfile);
int pfeof(PFILE *pfile);

DESCRIPTION

pferror returns non-zero if the error flag for pfile is set.

pfclrerr clears the error and the end-of-file flag of pfile. Unless you close pfile,
this is the only way to clear the error flag.

pfeof returns TRUE (non-zero) if the end-of-file flag is set.

NOTE

These functions are implemented as macros.

SEE ALSO

pfopen(3), pfclose(3), pfllush(3), pfwrite(3), pfread(3), pfremove(3), pfrename(3),
pfperror(3), pfstrerror(3)

AUTHOR

Rolf Riesen

Sunmos July 1992 26

Sunmos Parallel File Library PFPERROR(3)

NAME

pfperror, pfstrerror — Parallel file system messages

SYNTAX

#include ”clparfs.h”

void pfperror(char *str);
char *pfstrerror(int n);

DESCRIPTION

pfperror prints the string str, followed by a collon, followed by a string describing
the error number stored in pfs_error. If str is NULL, only the error message is
printed. If pfs_error is zero (NOERR), then nothing at all is printed.

pfstrerror returns a pointer to a string describing the parallel file system error n.
pfs_error contains an error number describing the most recent problem encountered

by the parallel file system. The currently implmented numbers and messages are:

ENOERR

Illegal error number

EWRNGFMT1
File name must begin with //fd

EWRNGFMT2

File name must be of the form //fdxy/name

ENOMEM

Out of memory

EWRNGCTRL
Controller # must be: 0 <= CTRL < MAX_STRIPES

ENODESC

Descriptor file does not exist

ESFEXISTS
One of the stripe files already exists

ECREATDESC

Can’t create the descriptor file

EWRNGMAGIC

Magic number read is incorrect

Sunmos July 1992 27

Sunmos Parallel File Library PFPERROR(3)

ECRPTDESC
Corrupted descriptor file

EOPENSF
Could not open stripe file(s)

EINVPARI1
Parameter must not be NULL

ECLOSESF

Error closing stripe file

EWRTDESC

Error writing to descriptor file

ECLOSEDESC

Error closing descriptor file

ENOUPDATE
Can’t open descriptor file for update

ENOWRT

Can’t open descriptor file for writing
ENOSEF Stripe file does not exist

EINVPAR2

size and nobj must be > 0

ERDONLY
Parallel file is read only

EINVMODE

Invalid mode

ERMDESC

Can’t remove the descriptor file
ERMSF Can’t remove a stripe file

ENOREAD

Can’t open descriptor file for reading

EXAMPLES

The following example shows a possible application of pfperror.

if ((pfp= pfopen(fname, "w", last, bsize)) == NULL) {
pfperror(argv[0]);
exit(-1);

Sunmos July 1992 28

Sunmos Parallel File Library PFPERROR(3)

SEE ALSO

pfopen(3), pfclose(3), pfllush(3), pfwrite(3), pfread(3), pfremove(3), pfrename(3),
pfeof(3), pferror(3), pfclrerr(3)

AUTHOR

Rolf Riesen

Sunmos July 1992 29

B An Example Program

30

/*

*+ Parallel File System Example 7/10/92 rr
* %

xk A simple program to show the use of some of the parallel file

*x system function calls. Put this program into ~ /ncube/sunmos/tests
x*x and compile it with:

*ok make partest.exe

* %

** You can now run it:

*k yod partest

+/

#include <clstdio.h>
#include "clparfs.h”

#define FILE_SIZE 100000 /+ Maz file size */
#define MAXRAND 32767.0 /* 2A15 - 1 %/

void srand(int);
char send_buf[FILE_SIZE];
char recv_buf[FILE_SIZE];

int main(int argc, char xargv(])

{
PFILE «pfp;

int rcw, rer, i
int cmp_err;

/*x The z in //fdzy/name determines the first disk to be used x/
char #fname= "//fde0/partest";

/* Block (stripe) size */
int bsize= 32 x 1024;

31

/* Last disk to be used */
int last= 15;

/* create random data in send buffer */
srand(ntime());
for (i= 0;i < FILE_SIZE; i++)

send_buffi]= rand() * 256 / MAXRAND;

/*

x*+ Create and write a parallel file

*/

if ((pfp= pfopen(fname, "w", last, bsize)) == NULL) {
pfperror(argv[0]);
exit(-1);

¥

rew= pfwrite(send_buf, 1, FILE_SIZE, pfp);
if (pfclose(pfp) # 0)

pfperror(argv[0]);
/*
x* Read the data back and delete the parallel file
*/
if ((pfp= pfopen(fname, "r", -1, -1)) == NULL) {
pfperror(argv[0]);
exit(-2);
}

rer= pfread(recv_buf, 1, FILE_SIZE, pfp);
if (pfclose(pfp) # 0)
pfperror(argv[0]);
if (pfremove(fname, -1) # 0)
pfperror(argv[0]);

/*

x+ Compare input and output
*/

cmp_err= FALSE;

i= 0;

32

while ((i < FILE_SIZE) && (lemp_err)) {
if (send_bufli] # recv_buf[i])
cmp_err= TRUE;
i++;
¥

if (cmp_err)
printf("compare error at %d\n",i);
else if (rew # FILE_SIZE)
printf("0Only %d bytes written\n", rcw);
else if (rcr # FILE_SIZE)
printf("0Only %d bytes read\n", rcr);
else
printf("Sent - received comparison ok\n");

return 0;

} /* end of main() */

33

C Function Descriptions

This section describes in detail how each function is implemented. It is not neces-
sary to read this section to use the library; the manual pages in appendix A should
be sufficient for that purpose.

C.1 PFILE *pfopen(char *filename, char *mode, int last, int *blk_size)

There are two different ways pfopen performs, depending on the mode. If a new
file is to be created (the “w” option), then all the stripe files are created with a
fopen command, truncating any existing files to zero length. The parameter last
determines how many stripe files are needed. Then the descriptor file is created in
the same manner.

my
T

If the parallel file already exists, and mode is specified, several consistency

checks are made.

1. The descriptor file is read in and the magic number is verified to make sure it actually
is a descriptor file.

2. We already know the start disk of the parallel file from the filename. last is read in
from the descriptor file, ignoring any user supplied value, and then checked, to make
sure it falls within the allowed range.

3. Now the length of all existing stripe files are compared to the numbers stored in the
descriptor file. This check is necessary to make sure the information in the descriptor
file has been updated after the last parallel file operation. This can be done with the
pflush or pfclose functions.

If the numbers match, we can be reasonably sure the current field in the descriptor
file is correct. This value tells us where (what disk) to append data to the parallel
file.

The descriptor file (as well as the stripe files), is left open until pfclose is called.
During a pfwrite, pfread, and a pfllush the descriptor is updated and written to
the descriptor file.

pfopen also mallocs memory for the PFILE structure. A pointer to this structure
is returned when all tests have been passed successfully. Otherwise, an error number
is stored in pfs_error, and NULL is returned.

The PFILE structure contains the FILE pointers to each open stripe file as well
as the descriptor file. The structure also contains information about the first and
last disk used, the block size, and the current file pointer position for this parallel

file.

34

C.2 int pfclose(PFILE *pfile)

The descriptor file is updated and then closed. All the stripe files are also closed,
and the memory holding PFILE, is freed.

C.3 int pflush(PFILE *pfile)

A fHlush instruction is issued to all stripe files, the descriptor file is updated and
also fllush-ed.

C.4 int pfwrite(void *ptr, int size, int nobj, PFILE *pfile)

A user block is written to the various stripe files as outlined in section ??. If the
user buffer is not word aligned, one, two, or three bytes are sent ahead before the
bulk transfer begins. Since the block size is usually a multiple of a word’s length,
this alignment has to be made at the start of every block. Users are, therefore,
discouraged to read and write from unaligned buffers.

Even when aligned buffers are used, the above checks and procedures may have
to be applied. If the previous pfwrite was for an uneven number of bytes, the
filling of the last stripe in the next pfwrite operation will leave the internal buffer
pointer at an uneven address. Users should therefore make sure that nobj * size is
a number evenly divisible by four. This assures best performance.

C.5 int pfread(void *ptr, int size, int nobj, PFILE *pfile)

pfread performs very similarly to pfwrite, except data flows into the opposite
direction.

C.6 int pfremove(char *filename, int last)

First, the descriptor file is opened and read. From it, the necessary information to
find all the stripe files, is extracted. If that works, the stripe files and the descriptor
file are deleted. last is ignored in that case.

If the descriptor file is, for any reason, unreadable, the parameter last is used to
find the last of the stripe files. Since the stripe files and the descriptor files are
ordinary files, the danger exists, that one of them is inadvertedly deleted. The last
parameter allows us to delete all parts of the parallel file, even if the descriptor file
has been corrupted.

C.7 int pfrename(char *oldname, char *newname)

Renames all parts of a parallel file to a new name. If one of the rename functions
fails, an attempt is made to go back to the state before the call to pfrename. If,

35

in the meantime, another process has created a file whose name now interferes with
the “undo” operation, pfrename has to abort.

In a later version this problem could be avoided by first attempting to create empty
files of the given new name. Then all files are “copied” to the new ones, and if
everything so far has worked, the old names will be removed.

If newname contains the name of a directory, that directory must exist on all disks
the parallel file uses. Also, the controller number in oldfile and newfile must be
identical; i.e. a relocation from one controller to another is not supported. A
lateral move, say from disk 0 to disk 2 is allowed however, as long as all necessary
directories exist on all disks affected.

C.8 int pferror(PFILE *pfile)

returns TRUE if the error flag in the PFILE structure is set. This is a macro in
clparfs.h.

C.9 void pfclrerr(PFILE *pfile)

This macro clears the error bit in the PFILE structure.

C.10 int pfeof(PFILE *pfile)

The last macro in this group checks the EOF bit in the flag of the PFILE structure.

C.11 void pfperror(char *str)
A string describing the error stored in the global variable pfs_error, is displayed on

stderr. If str is not NULL, the string it points to is printed first, followed by a
colon, followed by the error message.

Should pfs_error be zero, nothing at all is displayed. pfperror uses pfstrerror.

C.12 char *pfstrerror(int n)

This function returns a pointer to a message appropriate to the error number in n.

36

